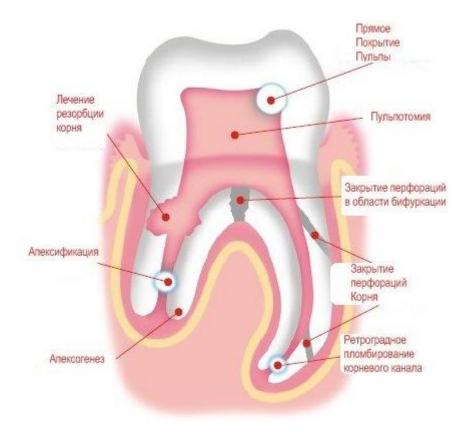
MTA - Angelus


ROOT CANAL REPARATIVE MTA CEMENT

Цемент для использования в эндодонтической практике

I. Описание

MTA – **Angelus** - это цемент для использования в эндодонтической практике, в состав которого входят оксиды минералов. Он состоит из гидрофильных частиц малого размера. При смешивании с водой он сначала переходит в форму геля, а затем затвердевает. Использование цемента особенно показано при латеральных перфорациях корня, перфорациях в области бифуркации, для ретроградного пломбирования корневого канала, прямого покрытия пульпы и пульпотомии в зубах с несформированной верхушкой корня. **MTA** – **Angelus** обладает некоторыми преимуществами по сравнению с амальгамой и цинкоксид-эвгенольными цементами, такими как:

- Великолепная герметизация, предотвращение миграции микроорганизмов и проникновения тканевых жидкостей в корневой канал.
- Биологическое закрытие перфораций корня и бифуркации путем стимуляции формирования цемента
- При использовании для покрытия пульпы стимулирует формирование дентинного мостика.

В отличие от всех остальных цементов, требующих абсолютно сухого рабочего поля, **MTA** – **Angelus** может быть использован даже при невозможности полноценного контроля за влажностью (например, при хирургических методиках закрытия перфораций корня и ретроградном пломбировании корневого канала) без потери свойств материала.

II. Состав

SiO₂, K₂O, Al₂O₃, Na₂O, Fe₂O₃, SO₃,CaO₂, Bi₂O₃, MgO, а также нерастворимый осадок CaO, KSO₄, NaSO₄ и кристаллического кремнезема

III. Основные свойства

1. Реакция отверждения

При контакте с водой цемент переходит в форму геля, который затвердевает в течение 10 – 15 минут.

2. Время отверждения

Начальное отверждение – 10 минут, окончательное – 15 минут. Для продолжения лечения нет необходимости ждать полного отверждения

3. Рентгеноконтрастность

Более высокая, чем у дентина и костной ткани, близкая к гуттаперче. Легко выявляется на рентгенограмме.

4. Концентрация ионов водорода (рН)

Сильная щелочь (pH = 12); предотвращает размножение микроорганизмов, обеспечивает длительный бактерицидный эффект.

5. Прочность на сжатие

44,2 МПа через 28 дней. Эти цифры являются вполне приемлемыми, учитывая тот факт, что области применения материала не подвергаются прямой окклюзионной нагрузке.

6. Растворимость

МТА – Angelus нерастворим в присутствии влаги, что обеспечивает великолепную герметизацию.

7. Герметизирующие свойства и предотвращение проникновения бактерий

Герметизирующие свойства цемента МТА – Angelus исследовались *in vitro* (проникновение красителя по границе между дентином и материалом). Низкий уровень проникновения красителя указывает на то, что МТА – Angelus обладает великолепными герметизирующими свойствами. Учитывая то, что бактерии имеют большие размеры, чем молекулы красителя, значительно уменьшается проницаемость для микроорганизмов и обеспечивается великолепная краевая герметизация.

IV. Инструкции по применению

A. Нанесите одну мерную ложку порошка MTA – Angelus и одну каплю дистиллированной воды на стерильное стекло для замешивания

- В. С помощью шпателя смешивайте порошок и дистиллированную воду в течение 30 секунд до достижения гомогенной консистенции, сходной с мокрым песком.
- С. С помощью стерильного амальгамоносителя нанесите готовую смесь в нужную область и сконденсируйте ее.

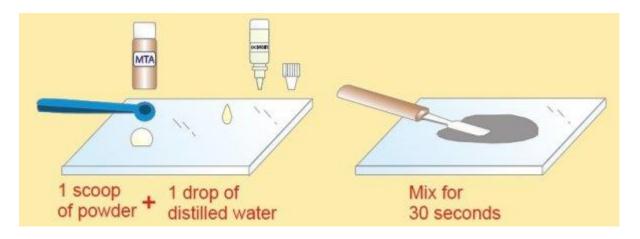


Рис. 1 ложка порошка + 1 капля дистиллированной воды

Смешивайте в течение 30 секунд

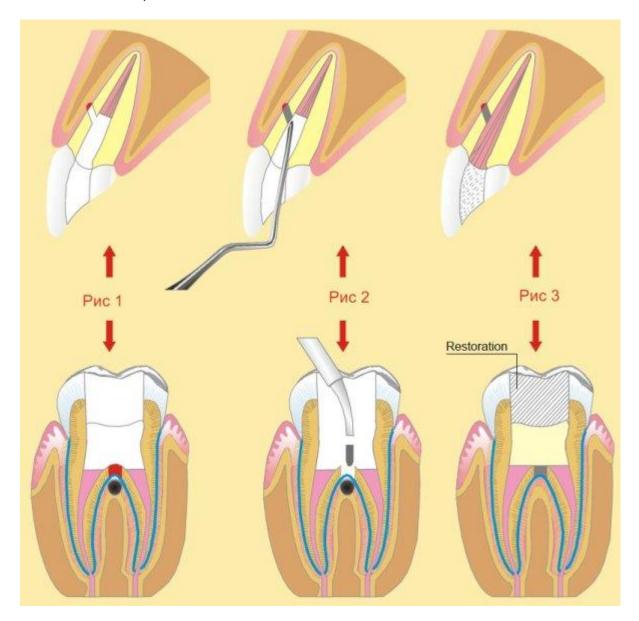
ВАЖНО

Мерная ложка должна быть продезинфицирована химическим методом (погружение в 70% этиловый спирт на 10 минут)

Если материал MTA – Angelus не используется сразу после замешивания, для предотвращения дегидратации и увеличения рабочего времени можно накрыть смесь на стекле влажной марлей.

V. Предупреждения и меры предосторожности

- А. Быстро закрывайте крышку контейнера, в котором вы храните порошок. Порошок чрезвычайно чувствителен к влажности.
- В. Кислая среда в участках воспаления нарушает реакцию отверждения материала MTA Angelus. Поэтому используйте цемент только после устранения острой симптоматики и достижения ремиссии.
- C. Не используйте MTA Angelus для пломбирования корневого канала
- D. При выведении MTA Angelus в околозубные ткани материал резорбируется. Однако выведение любого цемента может отрицательно сказаться на процессе заживления.
- Е. Храните материал в сухом, хорошо вентилируемом, защищенном от света месте.
- F. Для использования в асептических условиях.

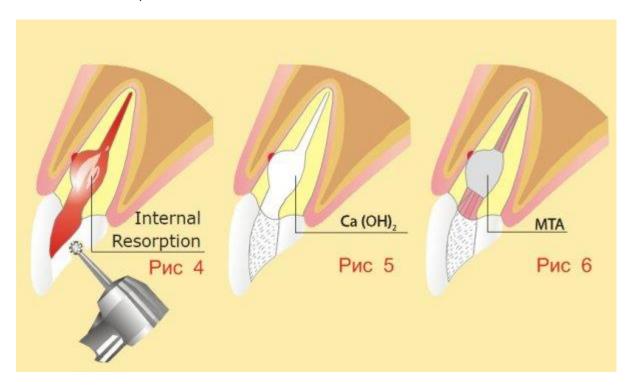

VI. Показания и советы по применению

Представленная здесь информация основана на результатах клинических и научных исследований. Клинический успех зависит от правильной постановки диагноза, тщательного соблюдения методики лечения, состояния зубов, подвергающихся лечению, и общего состояния здоровья пациента.

1. Перфорация корня и области бифуркации

- А. Анестезия и изоляция операционного поля
- В. Обработка области перфорации раствором гипохлорита натрия
- С. Препарирование корневого канала и обтурация его гуттаперчей со стандартным силером ниже уровня перфорации (Рис. 01)

- D. Введение MTA Angelus в область перфорации и конденсация его с помощью плаггеров или стерильных ватных шариков (Рис. 02)
- Е. Заполнение остальной части канала гуттаперчей со стандартным силером (Рис. 03)
- F. Рентгенологическое исследование сразу после проведения лечения и в последующем через каждые 3 6 месяцев в течение как минимум 2 лет

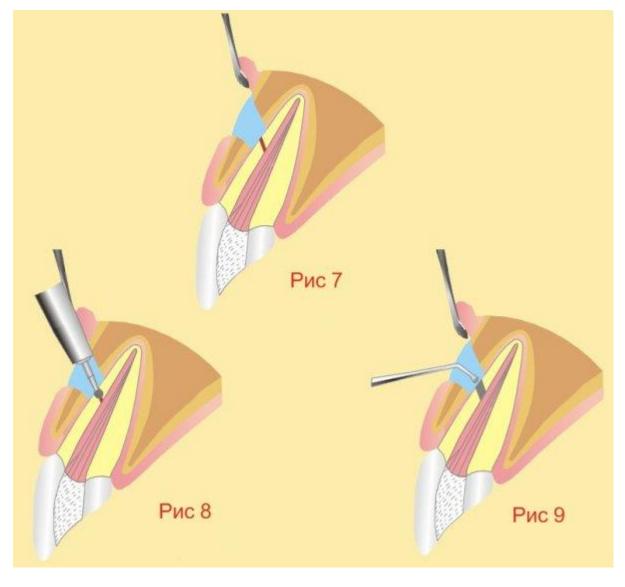

2. Перфорация корня вследствие его внутренней резорбции

ПЕРВОЕ ПОСЕЩЕНИЕ

- А. Анестезия и изоляция операционного поля
- В. Раскрытие полости зуба и обеспечение доступа к области резорбции (Рис.4)
- С. Промывание раствором гипохлорита натрия
- D. Удаление грануляционной ткани и пульпы
- Е. Введение в канал пасты на основе гидроксида кальция (Рис.5)

ВТОРОЕ ПОСЕЩЕНИЕ

- А. Удаление из корневого канала пасты на основе гидроксида кальция путем промывания раствором гипохлорита натрия
- В. Обтурация апикальной части канала гуттаперчей со стандартным силером
- C. Введение MTA Angelus в область резорбции и конденсация его с помощью плаггеров или стерильных ватных шариков (Рис.6)
- D. Рентгенологическое исследование сразу после проведения лечения и в последующем через каждые 3 6 месяцев в течение как минимум 2 лет


Рисунки: Внутренняя резорбция Ca(OH)₂ МТА

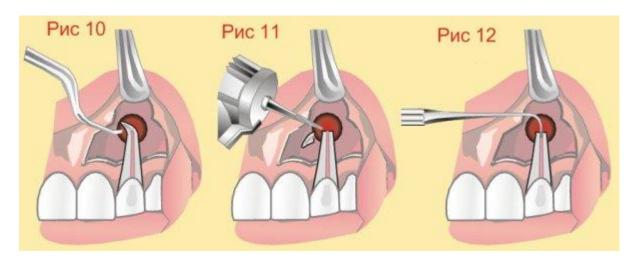
3. Хирургическая методика закрытия перфораций*

* Проводится в случаях неэффективности попыток закрытия через корневой канал

Методика операции

- А. Отслаивание лоскута для определения места перфорации (Рис.7)
- В. Препарирование полости и придание перфорации соответствующей формы для облегчения введения материала MTA Angelus (Puc.8).
- С. Остановка кровотечения и высушивание операционного поля
- D. Замешивание MTA Angelus и введение его в отпрепарированную область перфорации с помощью плаггеров (Рис.9)
- E. Удаление излишков цемента с помощью режущих инструментов (на этом этапе не допускайте попадания влаги на MTA)
- F. Возврат лоскута в исходное положение и наложение швов
- G. Рентгенологическое исследование сразу после проведения лечения и в последующем через каждые 3 6 месяцев в течение как минимум 2 лет

4. Резекция верхушки корня с ретроградным пломбированием*


* Проводится в случаях неэффективности лечения через корневой канал и (или) при невозможности доступа в корневой канал через коронку зуба

Методика операции

- А. Отслаивание лоскута, удаление костной ткани (при необходимости) и обнажение верхушки корня (Рис.10)
- В. Резекция верхушки корня на 2 3 мм (0.1") (Рис.11)
- С. Препарирование в апексе полости по I классу*
- * Типичная полость по I классу, как для постановки пломбы из амальгамы на жевательной поверхности коронки зуба, только в миниатюре
- D. Остановка кровотечения и высушивание операционного поля
- E. Замешивание MTA Angelus и введение его в отпрепарированную полость с помощью амальгамоносителя и (или) специальных плаггеров (Рис.12)
- F. Удаление излишков цемента с помощью режущих инструментов (на этом этапе не допускайте попадания влаги на MTA)
- G. Возврат лоскута в исходное положение и наложение швов

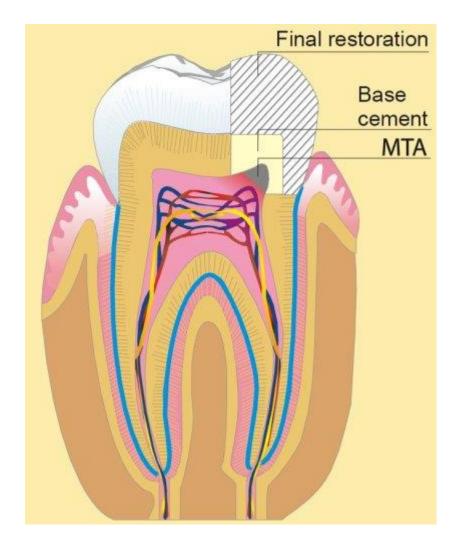
H. Рентгенологическое исследование сразу после проведения лечения и в последующем через каждые 3 — 6 месяцев в течение как минимум 2 лет

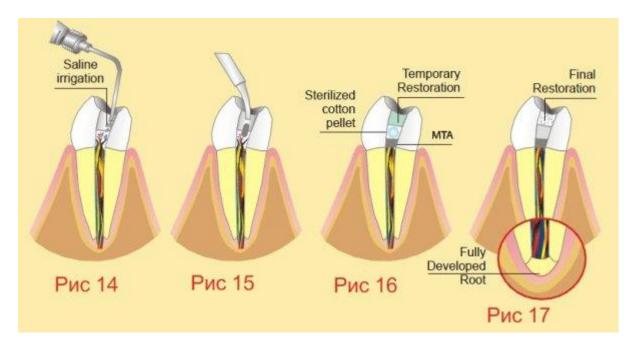
ВНИМАНИЕ: При хирургических вмешательствах кровь из окружающей костной ткани и надкостницы может попасть на цемент МТА до репозиции лоскута. Контакт с кровью и влагой может ускорять реакцию отверждения МТА.

5. Прямое покрытие пульпы

MTA – Angelus может использоваться для покрытия пульпы, обнаженной в результате кариозного процесса, перелома коронки или инструментальной обработки (борами, экскаваторами)

- А. Анестезия и изоляция операционного поля
- В. Удаление кариозных тканей
- С. Очистка полости с использованием раствора гипохлорита натрия или физиологического раствора
- D. Замешивание MTA Angelus
- E. Покрытие обнаженного участка пульпы материалом MTA Angelus
- F. Закрытие MTA Angelus подкладочным цементом (цинк-фосфатным, цинкоксид-эвгенольным, стеклоиономерным)
- G. Изготовление постоянной реставрации
- Н. Проверка жизнеспособности пульпы в последующие посещения



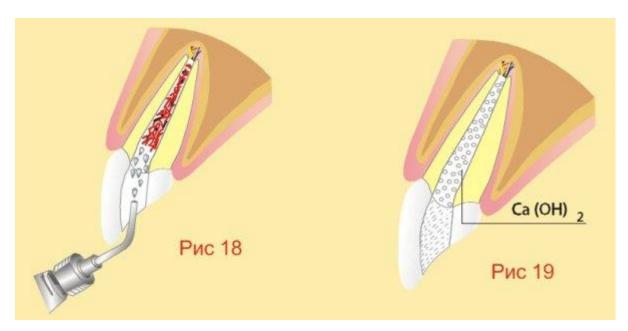

Рисунок: Постоянная реставрация

Подкладочный цемент МТА

6. Пульпотомия и апексогенез*

(Последовательность работы в обоих случаях)

- * Апексогенез: для обеспечения формирования корней живых зубов с воспаленной коронковой пульпой
- А. Анестезия, изоляция с помощью раббердама
- В. Создание эндодонтического доступа, ампутация коронковой пульпы и промывание физиологическим раствором (Рис.14)
- С. Остановка кровотечения
- D. Замешивание и нанесение материала MTA Angelus на корневую пульпу и дно полости зуба с помощью стерильного амальгамоносителя (Рис.15)
- E. Легкая конденсация материала MTA Angelus с помощью стерильного ватного шарика, который затем выбрасывается
- F. Закрытие MTA Angelus новым стерильным влажным ватным шариком и постановка временной пломбы (Рис.16)
- G. Проведение динамического наблюдения за клинической симптоматикой и рентгенологических исследований через каждые 3 месяца до полного формирования корня. После этого можно изготовить постоянную реставрацию или, при необходимости, провести традиционное эндодонтическое лечение (Рис.17)

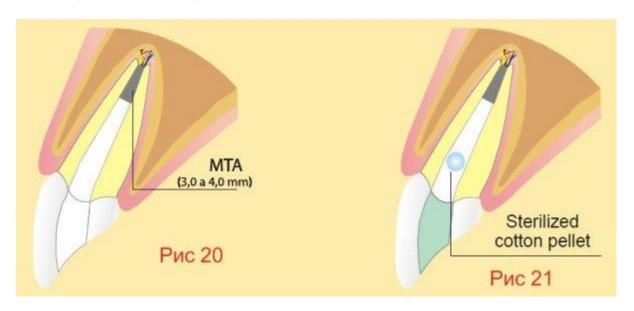

Рисунки: Рис.14. Промывание физиологическим раствором Рис.16 Стерильный ватный шарик, Временная реставрация, МТА Рис.17 Постоянная реставрация, Корень со сформированной верхушкой

7. Апексификация*

*Для стимуляции образования апикального барьера из твердых тканей в постоянных зубах с несформированными верхушками корней и некротизированной пульпой

ПЕРВОЕ ПОСЕЩЕНИЕ

- А. Анестезия, изоляция с помощью раббердама
- В. Создание эндодонтического доступа, препарирование корневого канала (Рис.18)
- С. Введение в корневой канал пасты на основе гидроксида кальция на одну неделю (Рис.19)

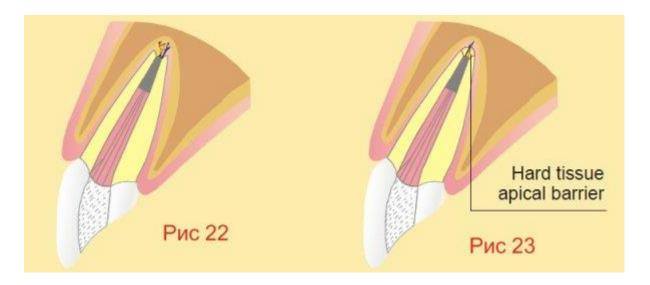


ВТОРОЕ ПОСЕЩЕНИЕ

А. Удаление из корневого канала пасты на основе гидроксида кальция путем обильного промывания раствором гипохлорита натрия

- В. Высушивание канала с помощью бумажных штифтов
- C. Замешивание материала MTA Angelus
- D. Введение в корневой канал MTA Angelus. Цемент должен быть сконденсирован таким образом, чтобы он закрывал апикальную часть канала слоем 3-4 мм. (Рис. 20)
- E. Рентгенологическое исследование для оценки и, при необходимости, коррекции расположения материала в канале
- F. Введение в корневые каналы влажных стерильных ватных шариков и постановка временной пломбы как минимум на 24 часа для полного затвердения материала МТА Angelus (Рис. 21).

Рисунки: Рис.20 МТА (слой 3,0 – 4,0 мм) Рис.21 Стерильный ватный шарик


ТРЕТЬЕ ПОСЕЩЕНИЕ

(минимум через 24 часа после второго посещения)

- А. Удаление временной реставрации и ватного шарика
- В. Обтурация остальной части канала гуттаперчей со стандартным силером (Рис. 22)

ВАЖНО: Если стенки корневого канала слишком тонкие, рекомендуется проводить их укрепление с помощью композитного материала

- С. Постоянная реставрация
- D. Клинический и рентгенологический контроль каждые 3-6 месяцев до окончания формирования апикального барьера

Рисунки: Рис.23. Апикальный барьер из твердых тканей

ВАЖНО: Представленная здесь информация основана на результатах клинических и научных исследований. Клинический успех зависит от правильной постановки диагноза, тщательного соблюдения методики лечения, состояния зубов, подвергающихся лечению, и общего состояния здоровья пациента.

Материал должен использоваться в соответствии с настоящими инструкциями